Expansion of the Lyme Disease Vector Ixodes Scapularis in Canada Inferred from CMIP5 Climate Projections
نویسندگان
چکیده
BACKGROUND A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. OBJECTIVES We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. METHODS We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical (1971-2000), and to forecast future effects of climate change on the R0 of I. scapularis for the periods 2011-2040 and 2041-2070. RESULTS Increases in the multimodel mean values estimated for both future periods, relative to 1971-2000, were statistically significant under all RCP scenarios for all of Nova Scotia, areas of New Brunswick and Quebec, Ontario south of 47°N, and Manitoba south of 52°N. When comparing RCP scenarios, only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences for any future time period. CONCLUSION Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement's goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. https://doi.org/10.1289/EHP57.
منابع مشابه
Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change
BACKGROUND Lyme disease is the commonest vector-borne zoonosis in the temperate world, and an emerging infectious disease in Canada due to expansion of the geographic range of the tick vector Ixodes scapularis. Studies suggest that climate change will accelerate Lyme disease emergence by enhancing climatic suitability for I. scapularis. Risk maps will help to meet the public health challenge of...
متن کاملNorthern Trek: The Spread of Ixodes scapularis into Canada
For a decade Nicholas Ogden, a researcher at the National Microbiology Laboratory of the Public Health Agency of Canada, has tracked the northern expansion of the deer tick (Ixodes scapularis), the vector for Lyme disease. He has found a strong correlation between rising winter temperatures and the spread of the tick population. Now Ogden has collaborated with Hugo Beltrami, Canada Research Cha...
متن کاملEstimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes scapularis
BACKGROUND The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. OBJECTIVES We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases...
متن کاملModeling the Geographic Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States.
In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has...
متن کاملSpatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the popula...
متن کامل